Agrichemical Mixtures in Drinking Water and Birth Outcomes in Nebraska

School of Natural Resources University of Nebraska-Lincoln

Nebraska Wellhead Protection Network November 19, 2020

bow.unl.edu

Martha Rhoades, PhD


Assess exposure Characterize risk

Identify hazard

Risk Assessment Toxicokinetics/health effect

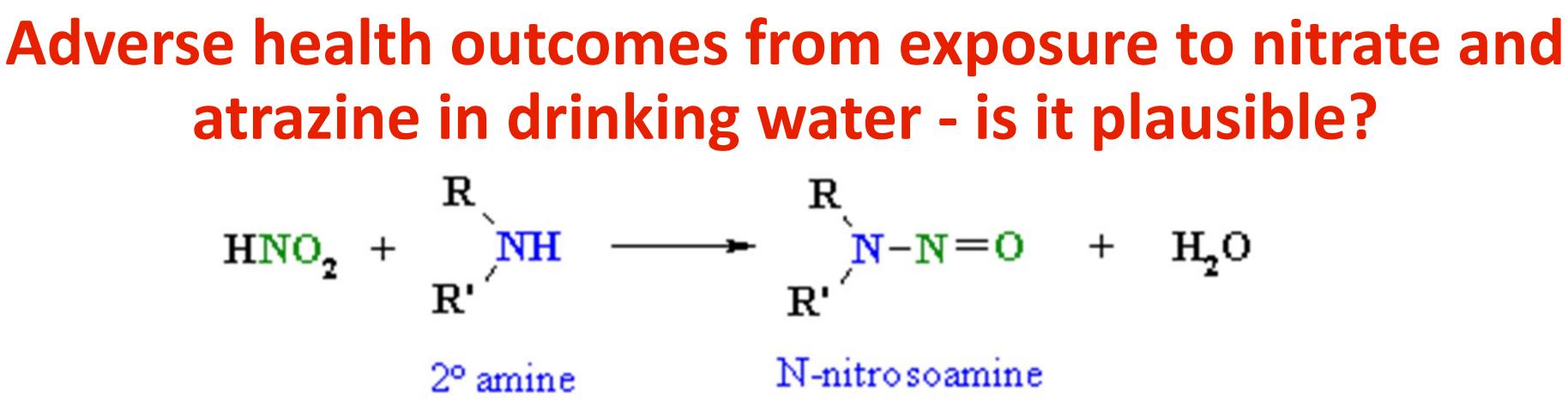

Nitrate and atrazine are the two most prevalent drinking water contaminants in Nebraska. *Does exposure increase risk of adverse health outcomes?*

Wells sampled for nitrate 1977-2014 70% - mean > 2 mg/L 18,513/26,447 wells sampled

Source: Quality-Assessed Agrichemical Contaminant Database for Nebraska Groundwater (queried Fall 2015)

Wells sampled for atrazine 1977-2014 31% - mean > 0 µg/L 1532 of 4940 wells sampled

Well types sampled (1977-2014)


Percent wells positive for nitrate, atrazine and combination by well type (1977-2014)

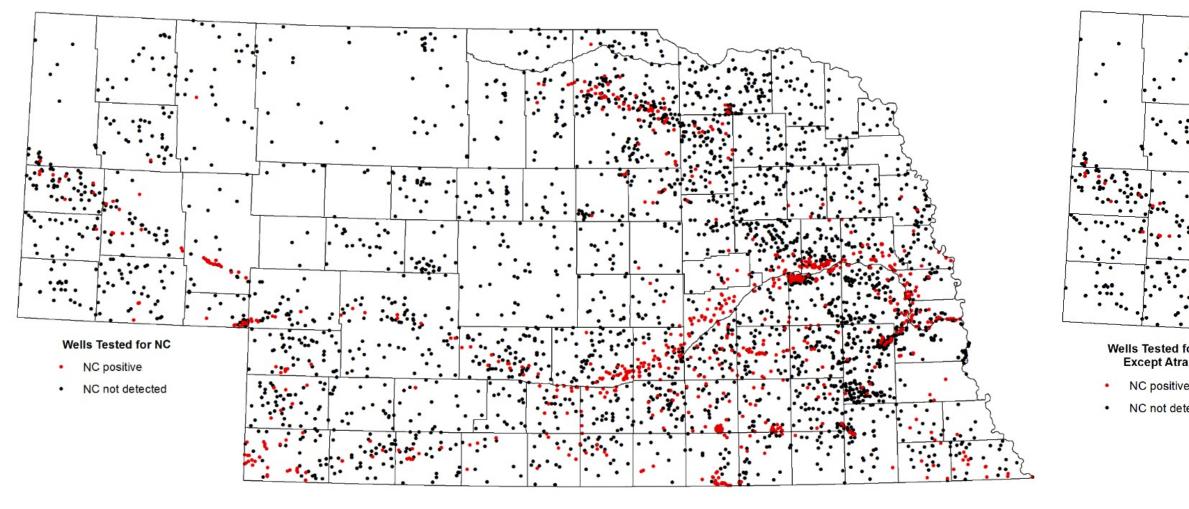
Distribution of wells sampled for atrazine and nitrate

Source: Quality-Assessed Agrichemical Contaminant Database for Nebraska Groundwater (queried Fall 2015)

New-Aaron MO, Rhoades MG. Midwest Rural Agricultural Safety and Health (MRASH) Conference. November 28, 2018

- N-nitrosoatrazine (NNAT) easily forms at pH similar to human stomach.
- Many nitrosamines are carcinogenic/teratogenic in animal models.
 - $-NNAT \rightarrow$ chromosomal aberrations in human lymphocytes at doses 1000 X lower than nitrate or atrazine (Meisner, et al. 1993).
 - $-NNAT \rightarrow Malformations in chicken embryos (Joshi, et al. 2013)$
 - -Risk of NHL increases with exposure to nitrate+atrazine in Nebraska public water systems (Rhoades, et al. 2013)
- Hypothesis Exposure to the mixture is more toxic than exposure to either contaminant alone.

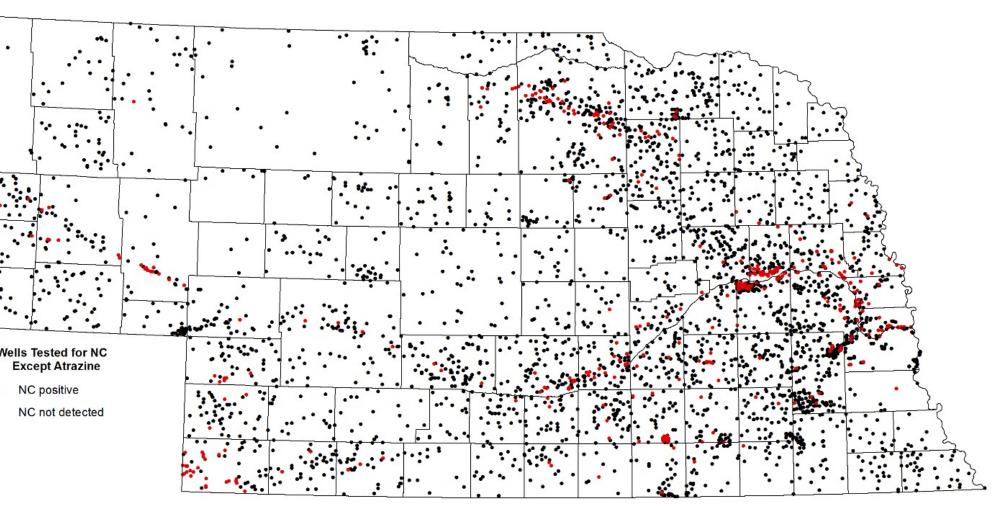
- H,O
- N-nitrosoamine



Nitrosatable agrichemicals detected in Nebraska groundwater wells

Metolachlor ESA* 70% (28; 107)	cyan 67	thyl- azine ′% 12)	Alachlor ESA* 52% (28; 107)	Deisopropyl- atrazine 37% (82; 1,927)	Deet atraz 259 (83; 2,	ine %	Alachlor ESA* 2°Amide 24% (23; 69)	
Propazine 17% (66; 1,988)	Alachlor OA** 16% (19; 56)		Metolachlor OA** 12% (28; 107)	Acetochlor ESA* 11% (28; 107)	Hydroxya 119 (5;	%	Hydroxy- simazine 8% (4; 12)	
Acetochlor OA** 7% (28; 107)	Alachlor 6% (93; 4,454)		Prometon 4% (87; 2,291)	Acetochlor 3% (77; 1,591)	Bromacil 3% (74; 595)		Simazine 3% (87; 2,430)	
Propachlor 2.7% (85; 2,223)	Cyanazine 2% (93; 4,451)		Metolachlor 2% (93; 4,300)	Trifluralin <1% (93; 4,186)	Ametryn <1% (62; 795)		Metribuzin <1% (93; 4,345)	
Prometryn <1% (63; 797)		(Butylate <1% (93; 4,300)	S-Ethyl-N,N- dipropylthiocarbamate <1% (77; 1,842)			Pendimethalin <1% (75; 1,458)	
	Percentage of positive wells tested for nitrate + NC (# counties; # wells) 1,518 of 4,495 wells sampled were positive for nitrate + NC (34%)							

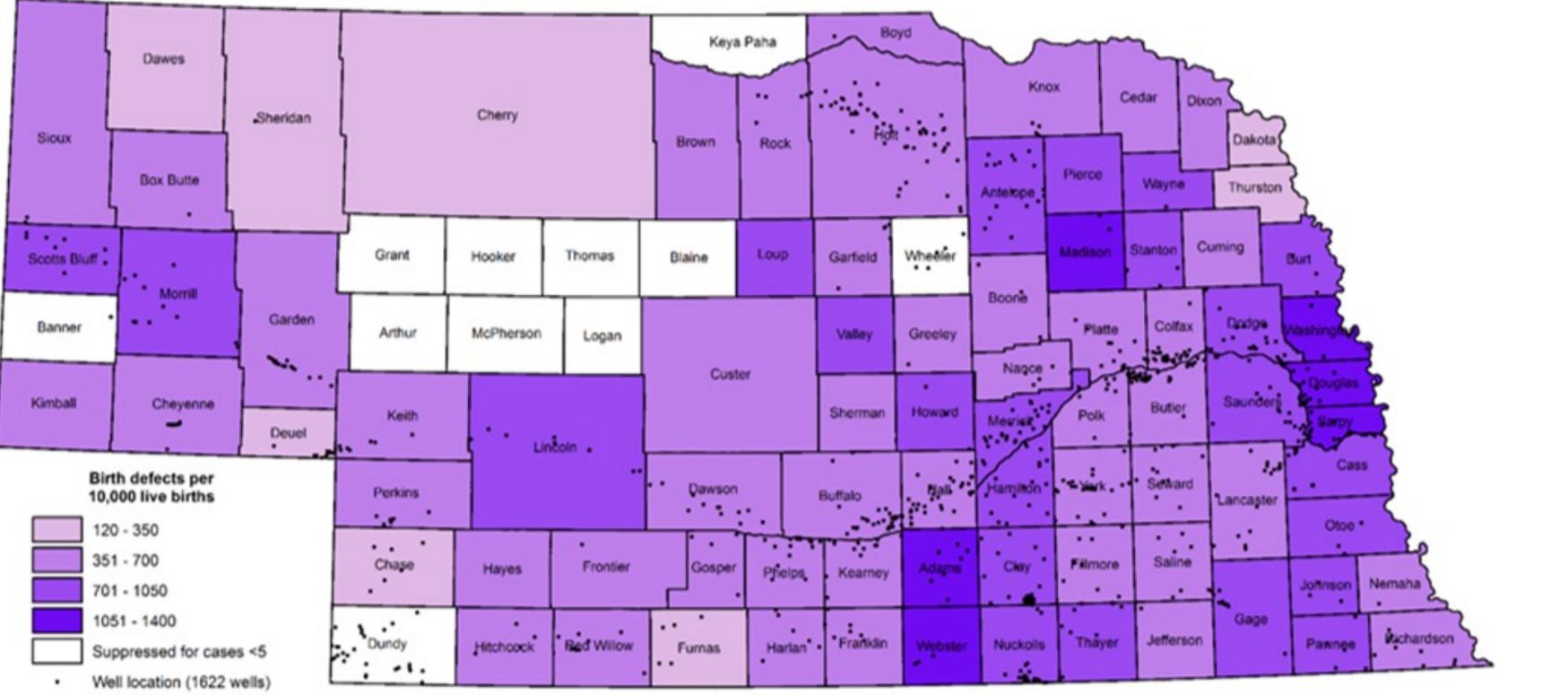
1,310 OI 4,495 wells sampled were positive for minate \pm NC (34%)


Nitrosatable compounds (NC) detected in Nebraska groundwater wells

Wells sampled for all NC (1977-2014)

24% positive (4736 sampled)

Source: Quality-Assessed Agrichemical Contaminant Database for Nebraska Groundwater (queried Fall 2015)


Wells sampled for all NC - atrazine (1977-2014) 18% positive (4736 sampled)

Congenital Anomalies in Nebraska

- National rate: Birth defects affect about 3.3% of all live ulletbirths in the U.S.
- Nebraska rate 2005-2014: 5.8% lacksquare
- 600-1200 reported birth defect cases per year
 - Cardiovascular (500+)
 - Central nervous system (100+) •
 - Gastrointestinal (250+) ullet
 - Genitourinary (550+) ullet
 - Musculoskeletal (250+) ullet

Nebraska birth defect rates by county and wells positive for nitrate + nitrosatable agrichemical

Birth defect rates 2005-2014. Source: Nebraska Department of Health and Human Services Source for well data: Quality-Assessed Agrichemical Contaminant Database for Nebraska Groundwater (queried Fall 2015)

Evidence from observational study

Linear regression between birth defect rates and percent agrichemical-positive wells

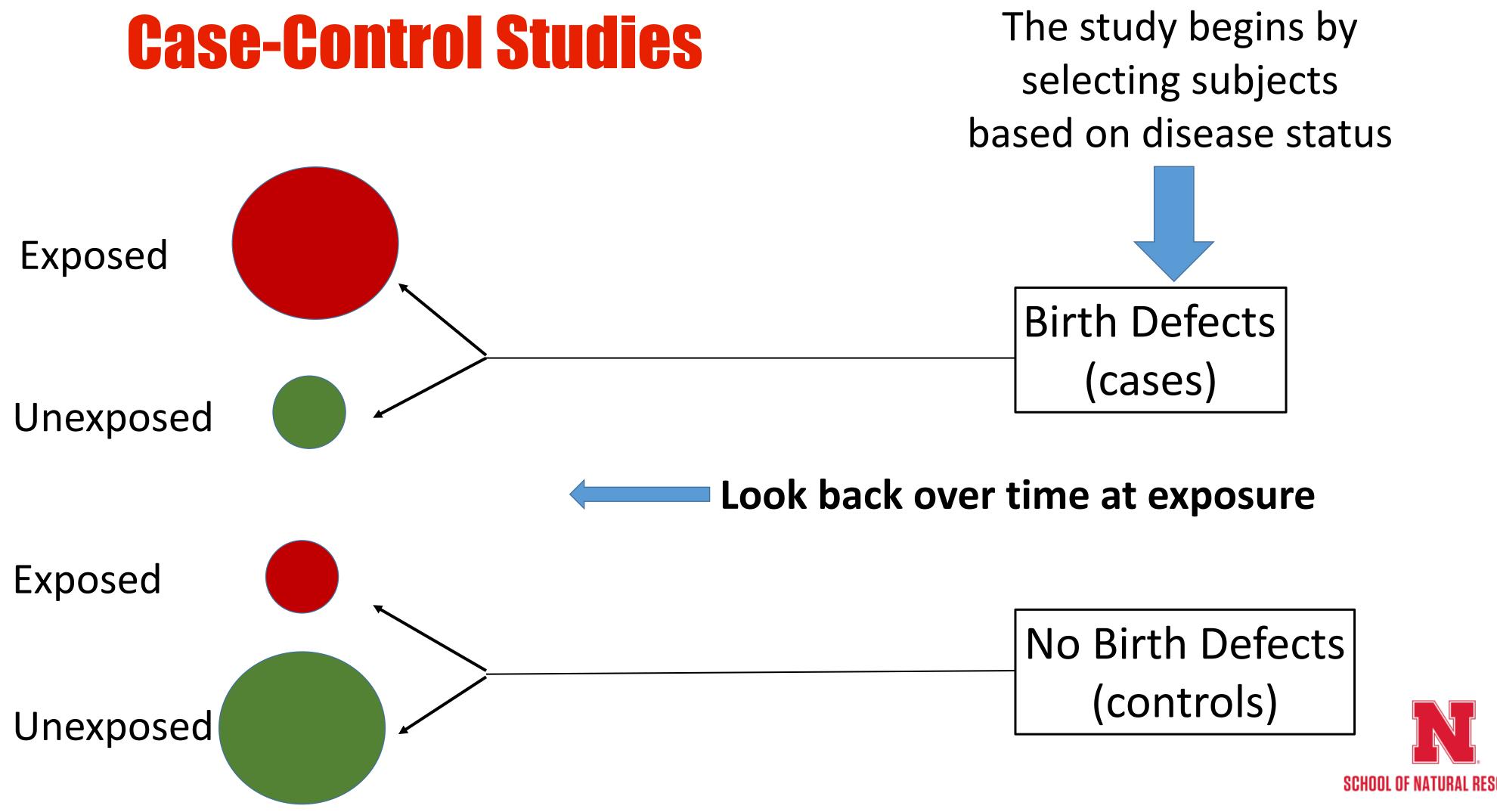
NCs=Nitrosatable compounds

Agrichemical (%)*	Slope	p value
Any NCs	3.12	0.02
Only Parent (P) NCs	2.92	0.03
Only Degradate (D) NCs	2.16	0.26
Nitrate	-4.33	0.07
Atrazine	3.03	0.03
Nitrate D	-2.71	0.14
Atrazine D	5.7	0.02
Nitrate P	-6.37	0.02
Atrazine P	1.87	0.05
Nitrate P+D	-2.45	0.19
Atrazine P+D	6.44	0.002
Nitrate+Atrazine D	5.73	0.03
Nitrate+Atrazine P+D	6.9	0.005
*Percent wells positive	P=Public	wells

D=Domestic wells

Correlation between birth defects and percent wells positive by agrichemical

> ESA-ethanesulfonic acid OXA-oxanilic acid



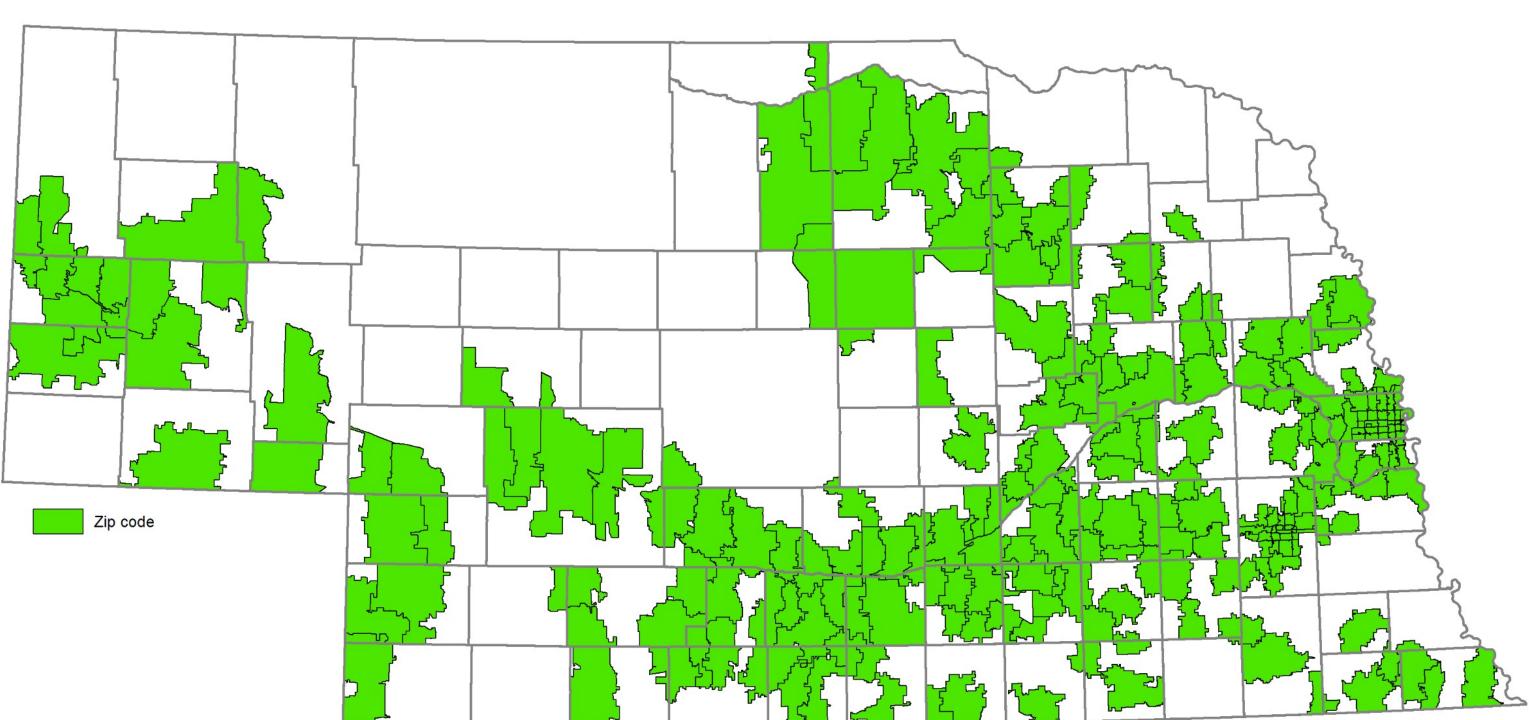
ESA-ethanesulfonic acid OXA-oxanilic acid

τ	Sig.	No. Counties
1.000		93
184**	.009	93
.203**	.005	93
.201**	.007	93
.252**	.001	93
.186*	.011	93
.223*	.013	77
.338*	.032	28
.338*	.032	28
.472**	.001	28
.353*	.012	28
.218**	.007	83
.213**	.008	83
.223*	.010	82
.222*	.010	82
.159*	.048	93
186*	.047	77
186*	.047	77

*Correlation is significant at the 0.05 level (2-tailed). **Correlation is significant at the 0.01 level (2-tailed).

Pilot/feasibility case-control study

- Nebraska women (n=40; 20 cases and 20 controls) • 5 each water supply (public, private, bottled, other)
- •Questionnaire
 - demographics/health/residential history
- •Water sample
 - Nitrate/pesticide analysis
 - Age dating
- Saliva sample
 - Salivary nitrate/nitrite → nitrosation potential
- Blood sample
 - Gene x Environment Interactions


 - Genotyping for *N*-nitrosamine metabolizers (CYP2E1 and NQO1) Chromosomal aberrations – t(14;18)
- Participant Perception
 - Barriers/motivation to participate

BOW Recruitment

- Zip codes with
 - One well positive for nitrate+nitrosatable agrichemical
 - One birth defect case
 - Lincoln
 - Omaha

(256 zip codes; 41,719 births)

Preliminary Findings

- •Two groups of 400
 - •276 undeliverable
 - •Left 524
 - •Responded: 42
 - •Yes: 35
 - •No: 7
 - •Too busy: 3
 - •Not interested: 3
 - Don't like to participate in research: 1
 - No response: 482

Water source for responders

Type of water	Number of responses		
Municipal Water	34		
Private Well	4		
Rural Water District	0		
Bottled Water	8		
Other	2		

Note: Some responses answered the question of the main drinking water source as two or more categories of the list provided. For example, answered both municipal water and bottled water. Data source: NDHHS

Case/control status

	case	control	total
Not eligible			
or lost to			
followup	8	12	20
Completed	7	1	8
In progress	3	4	7
total	18	17	35
	round 1	round 2	
total	19	16	

Enrolled more cases than controls

Data source: NDHHS

Findings to Date

Women are all in or all out.

• Willing to be contacted? • Consent to be contacted does not mean consent to participate. No Yes

• Willing to be contacted to discuss participating for reasons not or participating? No Yes

Public System

Private

Bottled

PWS +

TOTA

Participant water source

	Completed	In progress
Water n (PWS)	7	2
e Well	0	2
t	0	1
Bottled	1	2
L	8	7

Saliva and water data to date

Nitrate/nitrite concentrations

	N	Minimum	Maximum	Mean	Std. Deviation
Nitrate Water (mg/L)	10	.010	2.500	.770	.696
Nitrate Saliva (mg/L)	9	.087	17.277	4.038	7.002
Nitrite Water (mg/L)	10	.000	.124	.016	.038
Nitrite Saliva (mg/L)	9	.045	.997	.385	.323
Valid N (listwise)	9				

Pesti	iri	db	CO	ncer	ntr	ati	inns

	N	Minimum	Maximum	Mean	Std. Deviation
Atrazine (ug/L)	3	.005	.012	.008	.004
DEA (ug/L)	3	.000	.002	.001	.001
Propazine (ug/L)	3	.000	.005	.002	.003
Valid N (listwise)	3				

Note: 3/3 positive for atrazine, 2/3 positive for DEA, 1/3 positive for propazine

Participant Perception

- Semi-structured interviews with \$25 incentive
- Interviews 9
 - Water source public water system
 - Completed all study components 5
 - Ineligible for BOW study (residential history <3 years) 1
 - Ineligible for BOW study (3 recruitment contacts w/no response) 3

Motivators

- -Greater good of society
- -Interest in study topics (water/birth outcomes)
- -Financial incentive
- -Importance of research

3 years) - 1 cts w/no response) - 3

Barriers

-Time (especially COVID related)

Next Steps

- Nonresponse letters
 - #2 to Cohort 1
 - #1 to Cohort 2

Limitations

- Residential history
 - Must be a resident at current location for three years prior to conception
 - •? Recruit births 2017-2018?
- Lost to follow-up
 - No response to recruitment call
 - Are these subjects also lost to the participant perception component?
- Well type
 - To date all subjects report public water system as primary drinking water source
- Blood sample
 - Cooperation of providers



BOW Study Challenges

- Increase awareness of issues and related research
 - -Without causing alarm
 - -Importance of participation in this type of study
 - -Disseminating research findings to the public
- Researcher, community and stakeholder bridge
 - -Partnerships
 - -Public perception
 - -Adapting methodology to increase participation
 - -Engagement and collaboration

- •Nebraska may be a good venue to conduct a cohort study to better understand the human health impacts of agrichemicals in drinking water.
- •If there is an association, we can develop preventive measures.

Acknowledgements

• Participants

Water Data

- NRDs
- Water Operators
- Colleen Steele

• Mapping

Les Howard

• Students

- Moses New Aaron
- Kelsey Karnik
- Courtney Dehm
- Emily Swanda
- Kaili Jorgens
- Ashley Thyes

Collaborators

- Roy Spalding, PhD
- Jane Meza, PhD
- Cheryl Beseler, PhD
- Pat Shea, PhD
- Julie Vose, MD
- Tom Rosenquist, PhD
- Kent Eskridge, PhD
- Debbi Barnes-Josiah, PhD
- Helen Raikes, PhD
- Amanda Flynn
- Lisa Pytlik-Zillig, PhD
- Lindsey Witt-Swanson
- Department of Health and Human Services
- Graphics
 - Dee Ebbeka

NU Center for Environmental Toxicology

NU Research Council

Thank you!

Questions?