

bow.unl.edu

Birth Outcomes and Water

Martha Rhoades, PhD School of Natural Resources University of Nebraska-Lincoln

Nitrate and atrazine are the two most prevalent drinking water contaminants in Nebraska. Does exposure increase risk of adverse health outcomes?

Wells sampled for **nitrate** (1977-2014) 70% positive (mean > 2 mg/L) of 26,447 wells sampled

Northeast CSD Service Area nitrate

69% positive (mean > 2 mg/L) 6,738 wells sampled

Source: Quality-Assessed Agrichemical Contaminant Database for Nebraska Groundwater (queried Fall 2015)

Wells sampled for **atrazine** (1977-2014) 31% positive (mean > 0 μ g/L) of 4940 wells sampled

Northeast CSD Service Area atrazine 10% positive (mean > 0 μ g/L) of 1204 wells sampled

Adverse health outcomes from exposure to nitrate and atrazine in drinking water - is it plausible?

- N-nitrosoatrazine (NNAT) easily forms at pH similar to human stomach. • Many nitrosamines are carcinogenic/teratogenic in animal models.
- $-NNAT \rightarrow$ chromosomal aberrations in human lymphocytes at doses 1000 X lower than nitrate or atrazine (Meisner, et al.).
- Hypothesis Exposure to the mixture is more toxic than exposure to either contaminant alone.

- N-nitrosoamine

Atrazine and nitrate in public drinking water supplies associated with non-Hodgkin lymphoma in Nebraska

	Odds Ratio	Significance	95% CI
Nitrate	0.57	0.089	0.3-1.09
Atrazine	0.96	0.84	0.66-1.4
Atz/nitrate-NHL	2.5	0.047	1.01-6.16
Atz/nitrate-In.NHL	3.47	0.044	1.04-11.51

- NHL risk 2.5 times higher for subjects exposed to nitrate and atrazine in drinking water compared to subjects not exposed.
- Indolent B-cell lymphoma risk 3.5 times higher for subjects exposed to nitrate and atrazine in drinking water compared to subjects not exposed.
- Hypothesis: Increased NHL risk due to in vivo formation of NNAT causing chromosomal mutations during metabolism \rightarrow carcinogenesis.

Rhoades MG, Meza JM, Beseler CL, Shea PJ, Kahle A, Vose JM, Eskridge KM, Spalding RF. Environmental Health Insights 2013:7 15-27

NNAT and Avian Embryo Development

Normal 5 day

NNAT 0.46 µg

- 1. Neural tube defect (8%) neural tube fails to close
- 2. Microphthalmia (11%) abnormally small eye
- 3. Craniofacial hypoplasia (11%) tissue deficiency or agenesis (organ fails to develop)
- 4. Heart defects (24%) Ectopic heart displacement of heart outside thoracic cavity
- 5. Gastroschisis (24%) protrusion of abdominal contents outside the abdominal wall
- 6. Caudal regression (19%) abnormal development of lower spine

Joshi N, Rhoades MG, Bennett GD, Wells SM, Mirvish SS, Breitbach MJ, Shea PJ *Toxicology and Environmental Health, Part A.* 2013: 76(17) 1015-1022.

NNAT 3.63 μg

agenesis (organ fails to develop) heart outside thoracic cavity hts outside the abdominal wall lower spine

SCHOOL OF NATURAL RESOURCES

Congenital Anomalies in Nebraska

- National rate: Birth defects affect about 3.3% of all live ulletbirths in the U.S.
- Nebraska rate 2005-2014: 5.8% lacksquare
- 600-1200 reported birth defect cases per year
 - Cardiovascular (500+)
 - Central nervous system (100+) •
 - Gastrointestinal (250+) ullet
 - Genitourinary (550+) ullet
 - Musculoskeletal (250+) ullet

Nitrosatable agrichemicals detected in Nebraska groundwater wells

Metolachlor ESA* 70% (28; 107)	Dee cyan 67 (4;	thyl- azine ′% 12)	Alachlor ESA* 52% (28; 107)	Deisopropyl- atrazine 37% (82; 1,927)	Deethyl- atrazine 25% (83; 2,081)		Alachlor ESA* 2°Amide 24% (23; 69)
Propazine 17% (66; 1,988)	Alachlor OA** 16% (19; 56)		Metolachlor OA** 12% (28; 107)	Acetochlor ESA* 11% (28; 107)	Hydroxyalachlor 11% (5; 9)		Hydroxy- simazine 8% (4; 12)
Acetochlor OA** 7% (28; 107)	Alac 6 (93; 4	chlor % I,454)	Prometon 4% (87; 2,291)	Acetochlor 3% (77; 1,591)	Bromacil 3% (74; 595)		Simazine 3% (87; 2,430)
Propachlor 2.7% (85; 2,223)	Cyan 2' (93; 4	azine % I,451)	Metolachlor 2% (93; 4,300)	Trifluralin <1% (93; 4,186)	Ametryn <1% (62; 795)		Metribuzin <1% (93; 4,345)
Prometryn <1% (63; 797)	I	Butylate <1% (93; 4,300)		S-Ethyl-N,N- dipropylthiocarbamate <1% (77; 1,842)		Pendimethalin <1% (75; 1,458)	
Percentage of positive wells tested for nitrate + NC (# counties; # wells) 1 518 of 4 495 wolls sampled wore positive for nitrate + NC (34%)							

1,310.014,495 wells sampled were positive for mitate $\pm 100.04\%$

Nitrosatable compounds (NC) detected in Nebraska groundwater wells

Wells sampled for all NC (1977-2014)

24% positive (4736 sampled)

Source: Quality-Assessed Agrichemical Contaminant Database for Nebraska Groundwater (queried Fall 2015)

Wells sampled for all NC - atrazine (1977-2014) 18% positive (4736 sampled)

SCHOOL OF NATURAL RESOURCES

Nebraska birth defect rates by county and wells positive for nitrate + nitrosatable agrichemical

Birth defect rates 2005-2014. Source: Nebraska Department of Health and Human Services Source for well data: Quality-Assessed Agrichemical Contaminant Database for Nebraska Groundwater (queried Fall 2015)

SCHOOL OF NATURAL RESOURCES

ONGOING RESEARCH - Pilot/feasibility case-control study

- Nebraska women (n=40; 20 cases and 20 controls) • 5 each water supply (public, private, bottled, other)
- •Questionnaire
 - demographics/health/residential history
- •Water sample
 - Nitrate/pesticide analysis
 - Age dating
- Saliva sample
 - Salivary nitrate/nitrite → nitrosation potential
- Blood sample
 - Gene x Environment Interactions

 - Genotyping for *N*-nitrosamine metabolizers (CYP2E1 and NQO1) Chromosomal aberrations – t(14;18)
- Participant Perception
 - Barriers/motivation to participate

237 zip codes

- wells positive for nitrate + nitrosatable agrichemical and
- at least one birth defect case
- Random sample
- 400 invites

BOW Recruitment

Progress and opportunities

Women are all in or all out.

	• Kes
 Willing to be contacted? 	• N
 Consent to be contacted does not mean consent to participate. 	th
Yes No	• Los
	• N
• Willing to be contacted to discuss	• A
reasons for participating or not	pa
Yes No	• Wel

Limitations

Residential history lust be a resident at current location for nree years prior to conception

t to follow-up lo response to recruitment call re these subjects also lost to the articipant perception component?

ll type

To date all subjects report public water system as primary drinking water source

BOW Study Challenges

- Increase awareness of issues and related research
 - -Without causing alarm
 - -Importance of participation in this type of study
 - -Disseminating research findings to the public
- Researcher, community and stakeholder bridge
 - -Partnerships
 - -Public perception
 - -Adapting methodology to increase participation
 - -Engagement and collaboration

Acknowledgments

Participants

Nebrasty OF

Collaboration Initiative Seed Grant

Roy Spalding, PhD

Jane Meza, PhD

Patrick Shea, PhD

Sidney Mirvish, PhD. 1929-2015

