# **BIRTH OUTCOMES AND WATER**



**BIRTH OUTCOMES AND WATER** 



UNL IRB #: 20180117044EP

# **STUDY GOAL**

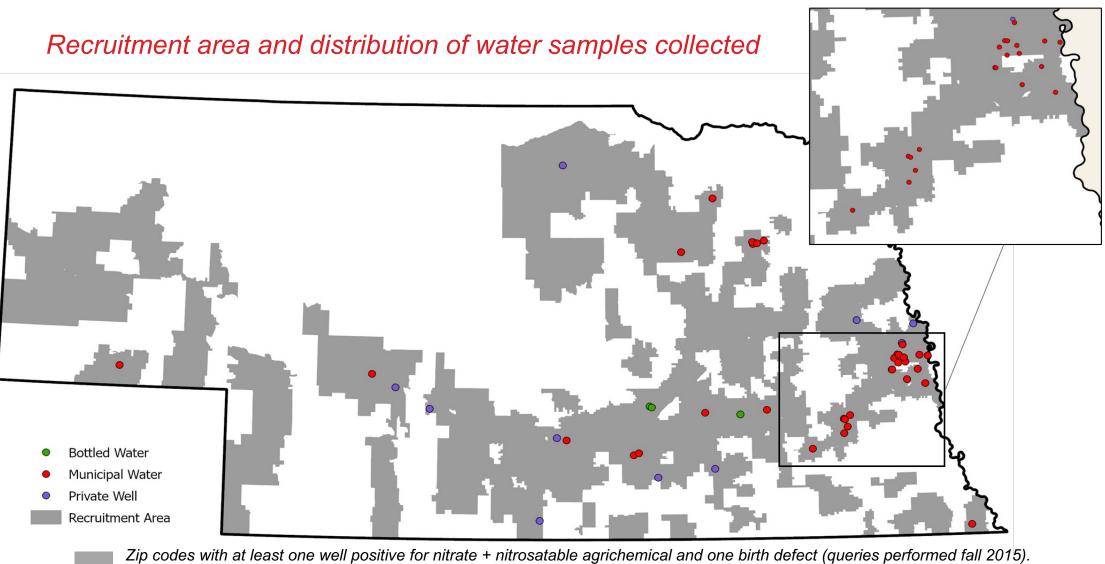
- children.
- outcome of her pregnancies?
- control study.



School of Natural Resources and Department of Statistics



 Better understand how women's health and environmental factors impact the health of their


 Research Question: Does a woman's exposure to agricultural chemicals in drinking water affect the

Determine sample size for a fully powered case-



# PILOT/FEASIBILITY CASE-CONTROL STUDY DESIGN

- Nebraska women (n=40; 20 cases and 20 controls)
  - 5 per water supply-public, private, bottled, other
  - Have access to water source used 3 years prior to conception
- Questionnaire Demographics/health/residential history
- Water sample
  - Nitrate/pesticide analysis
  - Age dating → exposure duration
- Saliva sample Salivary nitrate/nitrite → nitrosation potential
- Blood sample
  - Gene x Environment Interactions
    - Genotyping for N-nitrosamine metabolizers (CYP2E1 and NQO1)
    - Chromosomal aberrations t(14;18)
- Participant Perception
  - Barriers/motivation to participate



Data Sources: Nebraska Department of Health and Human Services; Quality-Assessed Agrichemical Contaminant Database for Nebraska Groundwater. Map generated 11/21/2022.

| TYPE OF WATER   | NUMBER OF<br>RESPONSES* |
|-----------------|-------------------------|
| Bottled water   | 3                       |
| Municipal water | 33                      |
| Private well    | 9                       |

\*Some responders listed two or more drinking water sources

# **AGRICHEMICALS OF INTEREST**

| Agrick | nemicals | ( ≥ 5 s | ubje |
|--------|----------|---------|------|
|        |          |         |      |

| Acetochlor ESA     | Acetochlor OA     | Alachlor<br>ESA | Alachlor OA | Atrazine | DEA   | Metolachlor |
|--------------------|-------------------|-----------------|-------------|----------|-------|-------------|
| Metolachlor<br>ESA | Metolachlor<br>OA | Nitrite-N       | Propazine   | Simazine | 2,4-D | Nitrate-N   |

| Agrichemicals (no subjects exposed) |                            | Agrick                     | nemicals ( < 5    | subjects ex                                                                                                                                                               | oosed)       |            |                 |
|-------------------------------------|----------------------------|----------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|-----------------|
| Chlorothanil                        | Cyanazine                  | EPTC                       | Metribuzin        | Acetochlor                                                                                                                                                                | Alachlor     | Butylate   | Dicamba         |
| Norflurazon                         | Pendamethalin              | Prometon                   | Propachlor        | DIA                                                                                                                                                                       | Dimethenamid | Permethrin | Tefluthrin      |
| Trifluralin                         | 4-Hydroxy<br>chlorthalonil | N-Nitroso<br>dimethylamine | Propachlor<br>ESA | *DEA=deethylatrazine, DIA=deisopropylatrazine, 2,4-D=2,4-dichlorophenoxyacetic acid,<br>ESA=ethane sulfonic acid, OA=oxanilic acid,<br>ERTC=S-Ethyl dipropylthiocarbamate |              |            | oxyacetic acid, |

### ects exposed)

EPTC=S-Ethyl dipropylthiocarbamate

# **PROPORTIONS OF CONTROL-CASE EXPOSED**

| Agrichemicals  | Control (n=19) | Case (n=23) | Odds Ratio(OR) | P-value |
|----------------|----------------|-------------|----------------|---------|
| Atrazine       |                |             | 2.1            | 0.28    |
| No             | 7              | 5           |                |         |
| Yes            | 12 (63%)       | 18 (78%)    |                |         |
| Metolachlor    |                |             | 1.9            | 0.32    |
| No             | 12             | 11          |                |         |
| Yes            | 7 (37%)        | 12 (52%)    |                |         |
| Acetochlor ESA |                |             | 2.1            | 0.26    |
| No             | 9              | 7           |                |         |
| Yes            | 10 (53%)       | 16 (70%)    |                |         |
| Simazine       |                |             | 1.3            | 0.71    |
| No             | 11             | 12          |                |         |
| Yes            | 8 (42%)        | 11 (48%)    |                |         |

## **PROPORTIONS OF CONTROL-CASE EXPOSED**

| Agrichemicals | Control (n=19) | Case (n=23) | Odds Ratio(OR) | P-value |
|---------------|----------------|-------------|----------------|---------|
| Acetochlor OA |                |             | 2.1            | 0.23    |
| No            | 11             | 9           |                |         |
| Yes           | 8 (42%)        | 14 (61%)    |                |         |
| Nitrite       |                |             | 3.6            | 0.04    |
| No            | 14             | 10          |                |         |
| Yes           | 5 (26%)        | 13 (57%)    |                |         |
| Alachlor ESA  |                |             | 1.6            | 0.43    |
| No            | 8              | 7           |                |         |
| Yes           | 11 (58%)       | 16 (70%)    |                |         |
| Alachlor OA   |                |             | 1.7            | 0.38    |
| No            | 10             | 9           |                |         |
| Yes           | 9 (47%)        | 14 (61%)    |                |         |
| 2,4-D         |                |             | 1.7            | 0.38    |
| No            | 10             | 13          |                |         |
| Yes           | 9 (47%)        | 10 (44%)    |                |         |

# **PROPORTIONS OF CONTROL-CASE EXPOSED**

| Agrichemicals   | Control (n=19) | Case (n=23) | Odds Ratio(OR) | P-value |
|-----------------|----------------|-------------|----------------|---------|
| DEA             |                |             | 1.3            | 0.73    |
| No              | 5              | 5           |                |         |
| Yes             | 14 (74%)       | 18 (78%)    |                |         |
| Metolachlor ESA |                |             | 1.3            | 0.76    |
| No              | 4              | 4           |                |         |
| Yes             | 15 (79%)       | 19 (83%)    |                |         |
| Metolachlor OA  |                |             | 0.82           | 0.77    |
| No              | 5              | 7           |                |         |
| Yes             | 14 (74%)       | 16 (70%)    |                |         |
| Propazine       |                |             | 1.1            | 0.93    |
| No              | 11             | 13          |                |         |
| Yes             | 8 (42%)        | 10 (44%)    |                |         |

# **AGRICHEMICAL MIXTURES**

| Agrichemicals        | Control (n=19) | Case (n=23) | Odds Ratio(OR) | P-value |
|----------------------|----------------|-------------|----------------|---------|
| Atrazine*Nitrite     |                |             | 4.1            | 0.03    |
| No                   | 15             | 11          | 4.1            | 0.05    |
| Yes                  |                |             |                |         |
| ies                  | 4 (21%)        | 12 (52%)    |                |         |
| Alachlor ESA*Nitrite |                |             | 4.9            | 0.02    |
| No                   | 16             | 12          |                |         |
| Yes                  | 3 (16%)        | 11 (48%)    |                |         |
| Alachlor OA*Nitrite  |                |             | 6.5            | 0.01    |
| No                   | 17             | 13          |                |         |
| Yes                  | 2 (11%)        | 10 (44%)    |                |         |
|                      |                |             |                |         |

### **DIETARY RISK FACTORS FOR BIRTH DEFECTS**

| Milk                                                    | Control (n=16) | Case (n=18)    | OR(95% CI)    | P-value |
|---------------------------------------------------------|----------------|----------------|---------------|---------|
| Low fat (Skim, 1% , 2%)<br>High fat (Fresh/ raw, whole) | 16<br>0 (0 %)  | 12<br>6 (33 %) | 1.5 (1.1-2.1) | 0.01    |

# **DISCUSSION AND CONCLUSION**

- Significant association between exposure to nitrite and birth defects
- Results suggest exposure to agrichemical mixture has a higher risk for birth defects
- Future research should investigate
  - further interactions between nitrite and other compounds (Is the interaction) linear?)
  - whether risk for birth defects varies across different demographic groups

# **LIMITATIONS AND NEXT STEPS**

- Specific birth defects
- Lack of diversity in race and ethnicity
  - May be due to eligibility criteria
  - Recruitment area
- Study will consider blood sample for:
  - Gene x Environment Interactions
  - Genotyping for *N*-nitrosamine metabolizers (CYP2E1 and NQO1)
  - Chromosomal aberrations t(14;18)
- Expand the study
  - Estimated sample size = 572 (286 cases and 286 controls)
  - Expand to other states (CO,KS,MO,WY,OK)/High Plains Aquifer?
- \$50 million cradle-to-grave cohort study
  - Grand challenge/N2025

# COLLABORATORS

- Participants
- Cartography (maps)
  - Les Howard
  - Greg Brinkman
- Graphics
  - Dee Ebbeka
  - Abigail Snyder
- Students (Graduate/undergraduate)
  - Kelsey Karnik, Amanda Flynn
  - Rachel Rogers, Augustine Adjei
  - Courtney Dehm, Emily Swanda
  - Ashley Thyes, Kaili Jorgens
  - Abigail Stevens, Alyssa Russum
  - Kara Kniep, Carolyn Billings
  - Grace VanDeSteeg, Elizabeth Struwe
- Water Quality Report Cover Letters
  - Becky Schuerman
- Lower Elkhorn NRD

### Faculty

- Roy Spalding, PhD
- Jane Meza, PhD
- Cheryl Beseler, PhD
- Patrick Shea, PhD
- Julie Vose, MD
- Philip Bierman, MD
- Greg Bennett, PhD
- Tom Rosenquist, PhD
- Kent Eskridge, PhD
- Debbi Barnes-Josiah, PhD
- Helen Raikes, PhD
- Terry Donohue, PhD
- Jennifer Sanmann, PhD
- Bhavana Dave, PhD
- Rodrigo Franco Cruz, PhD
- Eric Peeples, MD, PhD
- Troy Gilmore, PhD
- Lisa Pytlik-Zillig, PhD
- Samodha Fernando, PhD
- Sydney Mirvish, PhD

# **FINANCIAL SUPPORT**





**PARTICIPATING ORGANIZATIONS** 





NEBRASKA

Good Life. Great Mission.









