Fig 2: Total number of agrichemicals detected in BOW water samples

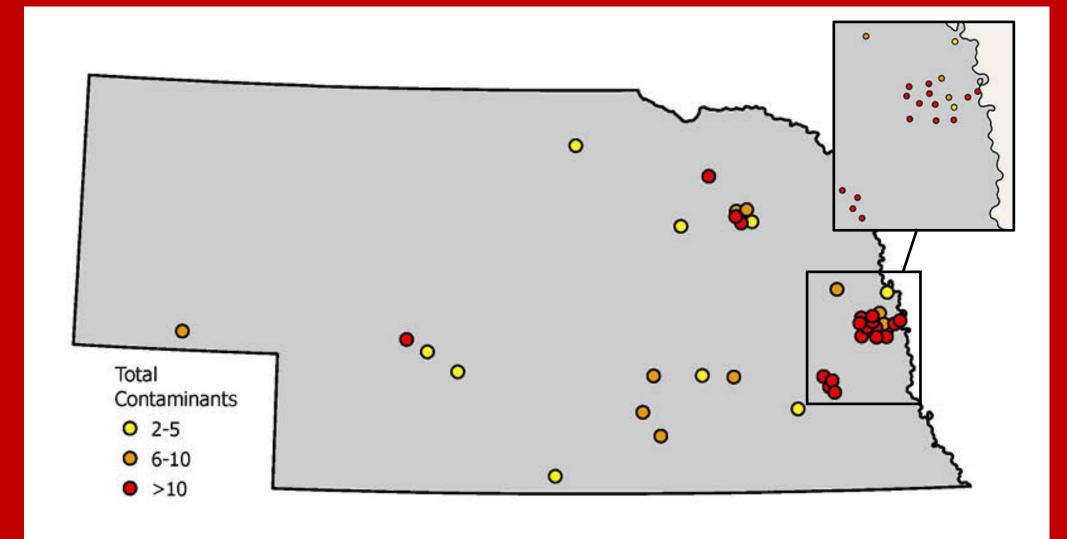
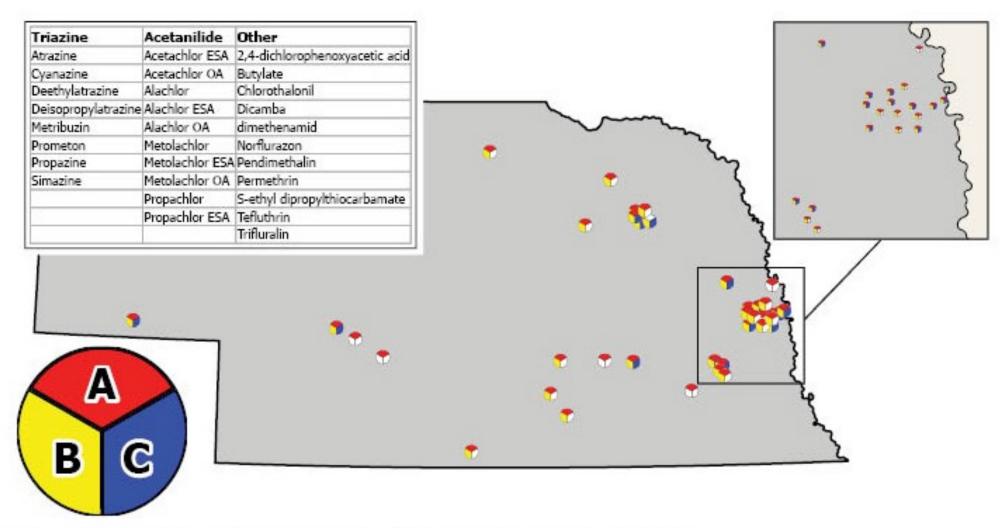



Fig 3: Classification of agrichemicals detected in BOW water samples

Group A - Triazane, Group B - Acetanilide, Group C - Other Contaminants

AGRICHEMICALS IN NEBRASKA DRINKING WATER MAY BE ASSOCIATED WITH RISK FOR BIRTH DEFECTS

Table 2: Proportion of case/control for exposure vs. nonexposure to single agrichemical compounds

Agrichemicals	Control	Case	Odds	P-value
-	(n=19)	(n=23)	Ratio	
Atrazine			2.1	0.28
No	7	5		
Yes	12(63%)	18(78%)		
Metolachlor		, ,	1.9	0.32
No	12	11		
Yes	7 (36.8%)	12 (52.2%)		
Acetochlor ESA			2.1	0.26
No	9	7		
Yes	10 (52.6%)	16 (69.6%)		
Simazine			1.3	0.71
No	11	12		
Yes	8 (42.1%)	11 (47.8%)		
Acetochlor OA			2.1	0.23
No	11	9		
Yes	8 (42.1%)	14 (60.9%)		
Alachlor ESA			1.6	0.43
No	8	7		
Yes	11(57.9%)	16 (69.6%)		
Alachlor OA			1.7	0.38
No	10	9		
Yes	9 (47.4%)	14 (60.9%)		
2,4-D			1.7	0.38
No	10	13		
Yes	9 (47.4%)	10 (43.5%)		
DEA			1.3	0.73
No	5	5		
Yes	14 (73.7%)	18 (78.3%)		
Metolachlor ESA			1.3	0.76
No	4	4		
Yes	15 (78.9%)	19 (82.6%)		
Metolachlor OA			0.82	0.77
No	5	7		
Yes	14 (73.7%)	16 (69.6%)		
Propazine			1.1	0.93
No	11	13		
Yes	8 (42.1%)	10 (43.5%)		

Pesticides and their degradation products, nitrate and nitrite detections in Nebraska drinking water samples collected from homes of Birth Outcomes and Water (BOW) study participants. Total number of participants = 42 (19 controls, 23 cases).

*DEA-deethylatrazine, DIA-deisopropylatrazine, 2,4-D=2,4-dichlorophenoxyacetic acid, ESA-ethane sulfonic acid, OA=oxanilic acid

Table 1: Summary of agrichemical detections and range of concentration

	Detections (N/X samples)	Range of Concentrations	Average concentration
Pesticides and	N/42	concentrations	
Degradation	147 42		
products (µg/L)			
DEA	32	0.001-0.170	0.041
Atrazine	30	0.001-0.560	0.111
Metolachlor	19	0.002-0.074	0.026
Propazine	18	0.001-0.025	0.006
Simazine	19	0.001-0.040	0.009
Dimethenamid	8	0.003-0.021	0.010
DIA	5	0.010-0.086	0.028
Acetochlor	4	0.003-0.010	0.007
Butylate	1	0.001	0.001
Permethrin	1	0.235	0.235
Metolachlor ESA	34	0.004-0.448	0.126
Metolachlor OA	30	0.001-0.272	0.066
Acetochlor ESA	26	0.002-0.204	0.046
Alachlor ESA	27	0.011-0.430	0.074
Alachlor OA	23	0.001-0.480	0.043
Acetochlor OA	22	0.001-0.272	0.090
2-4-D	19	0.001-0.040	0.009
Dicamba	2	0.037-0.367	0.202
Nitrate-N and			
Nitrite-N (mg/L)			
Nitrate-N	42	0.01-12.20	2.280
Nitrite-N	18	0.001-0.141	0.023

Table 3: Proportion of case/control for exposure vs. nonexposure to some agrichemical mixtures

Agrichemicals	Control (n=19)	Case (n=23)	Odds Ratio(95% CI)	P-value
Nitrite			3.6 (1.1 – 13.5)	0.04
No	14	10		
Yes	5 (26%)	13 (57%)		
Atrazine*Nitrite			4.1 (1.1 – 16.2)	0.03
No	15	11	12257 indete	
Yes	4 (21%)	12 (52%)		
Alachlor ESA*Nitrite			4.9 (1.2 – 21.4)	0.02
No	16	12	- 1609 - 1609	
Yes	3 (16%)	11 (48%)		
Alachlor OA*Nitrite			6.5 (1.3 – 35.1)	0.01
No	17	13		
Yes	2 (11%)	10 (44%)		

Table 4: Logistic regression between birth defects and nitrate, atrazine and their interaction

Agrichemicals (water)	Slope	Odds Ratio	P-value
Nitrate-N	-0.04	0.96	0.74
Atrazine	2.32	10.14	0.40
Nitrate*Atrazine	0.53	1.70	0.71

Comparative Analysis of Agrichemical Mixtures in Drinking Water and Birth Defects in Nebraska

Augustine Kena Adjei, Martha Rhoades, Troy Gilmore, Kent Eskridge University of Nebraska-Lincoln

INTRODUCTION

- Many areas of Nebraska struggle with nitrate and the presence of other agrichemicals is a growing concern. Exposure to nitrate and atrazine in drinking water is associated with increased risk of nonHodgkin lymphoma and adverse birth outcomes
- *N*-nitrosoatrazine (NNAT) can form *in vivo* after ingesting nitrate and atrazine. Hypothesis: Long-term, low-dose exposure to drinking water containing nitrate and nitrosatable agrichemicals
- has a greater impact on fetal development than exposure to the single compounds. **Objective:** Examine association between maternal exposure to nitrate, nitrite and nitrosatable agrichemicals through drinking water and risk of birth defects in Nebraska.

METHODS

- Water samples collected from residence of BOW participants (Fig 1). 34 agrichemicals measured (tables 1 & 5).
- Number (Fig 2) and class (Fig 3) of detected agrichemical contaminants in drinking water.
- Constructed case/control tables to compare agrichemical-exposed vs. unexposed mothers.
- Calculated odds ratios to estimate the risk for birth defects.

Bottled Water

Private Well

Municipal Water

Recruitment Area

RESULTS

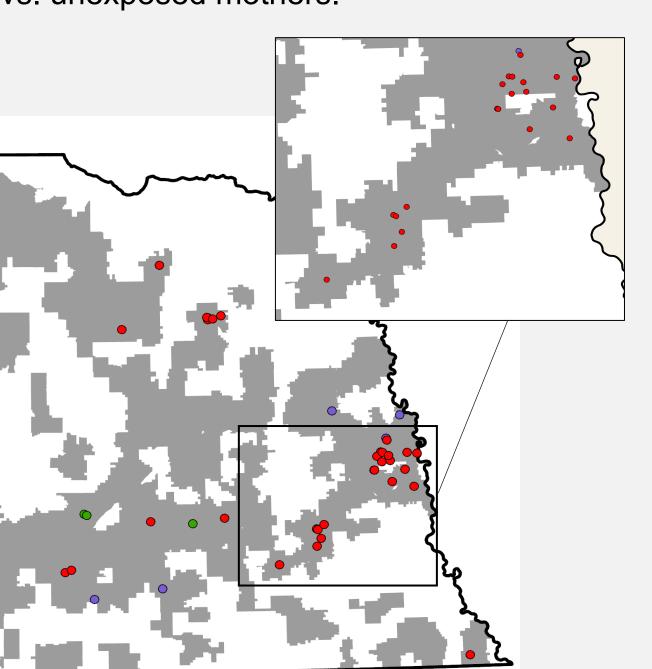
Fig 1: Sources of

drinking water in

Nebraska

- At least 2 contaminants were found in drinking water for all participants (Fig 2). One water sample contained 12.2 mg/L nitrate-N concentration above the MCL (10 mg/L), and all participants were exposed to nitrate (Table 1)
- Most common mixture contains nitrate, metolachlor ESA, DEA, metolachlor OA, atrazine, acetochlor ESA, acetochlor OA, alachlor ESA, alachlor OA, and metolachlor OA.
- Mothers exposed to nitrite were 3.6 times more likely to have a child with a birth defect (95% CI, 1.1-13.5) than nonexposed mothers.
- Exposure to co-occurring nitrite and atrazine increased birth defect risk by 4-fold (95% CI, 1.1-16.2).
- Concurrent exposure to nitrite and alachlor ESA increased risk for birth defects nearly 5-fold (95% CI, 1.2-21.4).
- No significant association between birth defect risk and exposure to nitrate (p=0.7) or atrazine as single compounds (p=0.4), or nitrate in combination with any nitrosatable agrichemical measured (Table 4).

DISCUSSION


- Analytes monitored by US EPA (MCL): 2,4-D (70 µg/L), alachlor (2 µg/L), atrazine (3 µg/L), nitrate-N (10 mg/L), nitrite-N (1 mg/L), and simazine (4 µg/L).
- Most pesticide transformation products not monitored by the US EPA. This may be a health concern and regular monitoring may be required.
- Absence of monitoring makes it difficult to establish adequate safety measures and regulations. Agrichemical mixtures (especially containing nitrite) should be considered when evaluating associations between exposure to agrichemicals in drinking water and adverse birth outcomes.
- Exposure to agrichemical mixtures may have a greater impact on adverse health outcomes than single compounds.

NEXT STEPS

- Examine other risk factors
 - Lifestyle and family/health history
 - Pesticide application Gene x environmental interactions
- Expand the study
 - 286 cases and 286 controls
 - Extend to other agricultural states

AND WATER
bow.unl.edu

Table 5: Agrichemicals not detected in BOW water samples Chlorothanil

Chlorothanil
Cyanazine
EPTC
Metribuzin
Norflurazon
Pendamethalin
Prometon
Propachlor
Trifluralin
4-Hydroxychlorthalonil
Propachlor ESA

Exposure to the combination of nitrite and alachlor OA was associated with a 6.5-fold increased risk for birth defects (95% CI, 1.3-35.1).

ACKNOWLEDGMENTS

- **Participants:** This important research would not be possible without the participants.
- **Funding:** University of Nebraska Collaboration Initiative Seed Grant and Daugherty Water for Food Global Institute
- **Graphics:** Dee Ebbeka
- Cartography(maps): Greg Brinkman

BUREAU OF SOCIOLOGICAI

RESEARCH

